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ABSTRACT

This paper presents two unsupervised approaches to
Automatic Language Identification (ALI) based on a
segmental preprocessing. In the Global Segmental
Model approach, the language system is modeled by a
Gaussian Mixture Model (GMM) trained with auto-
matically detected segments. In the Phonetic Differenti-
ated Model approach, an unsupervised detection
vowel/non vowel is performed and the language model
is defined with two GMMs, one to model the vowel
segments and a second one to model the others seg-
ments. For each approach, no labeled data are required.
GMMs are initialized using an efficient data-driven
variant of the LBG algorithm: the LBG-Rissanen algo-
rithm.
With 5 languages from the OGI MLTS corpus and in a
closed set identification task, we reach 85 % of correct
identification with each system using 45 second dura-
tion utterances for the male speakers. We increase this
performance (91%) when we merge the two systems.

Keywords: Language Identification, vowel and conso-
nant modeling.

1. INTRODUCTION

Automatic Language Identification (ALI) is one of the
main challenges for the next decade in automatic speech
processing. Today, many efforts focus on speech tech-
nology to provide reliable and efficient Human-
Computer Interfaces. The need for multilingual capaci-
ties becomes overwhelming because of the joined de-
velopment of world communication and multi-ethnic
societies as the European Economic Community. The
language obstacle will remain until ALI systems reach
excellent performance and reliability in order not to
limit the overall system performance.
Presently, the most efficient ALI systems are based on
phonotactic discrimination via specific statistical lan-
guage modeling [1,2,3,4]. In most of them, phonetic
recognition is merely considered as a front-end: it con-
sists in a projection from the continuous acoustic space
into a discrete symbolic space without taking the resul-
tant likelihood into account. This approach may be sub-
optimal from the phonetic and the phonological points
of view, though these aspects carry a substantial part of
the language identity.

We propose an alternative approach which emphasizes
the rule of the acoustic phonetic features.  The acoustic
processing consists of an a priori automatic segmenta-
tion and a global analysis of each segment, followed by
a statistical decision:
- for the Global Segmental Model system (GSM), the

acoustic space of each language is represented clas-
sically by an unique Gaussian Mixture Model
(GMM).

- for the Phonetic Differentiated Model system, an a
priori automatic identification of the vocalic seg-
ments is performed. It results that, for each lan-
guage, the vocalic space is modeled by a GMM
while the non vocalic space is modeled by another
one. The identification decision is given according
to the combined vocalic and non-vocalic likeli-
hoods.

One advantage of such an approach is that no labeled
data is necessary. Experiments are realized with five
languages (French, Japanese, Korean, Spanish and
Vietnamese) of the OGI Multilingual Telephone Speech
corpus, to compare the GSM and PDM systems; they
obtain similar performance, but the best performance
results when merging them.

Section 2 of this paper offers a description of the Global
Segmental Model system, and section 3 a description of
the Phonetic Differentiated Model one. Section 4 pres-
ents a number of experiments. We discuss the perform-
ance and the perspective of such approaches during the
conclusion paragraph.

2. GLOBAL SEGMENTAL MODEL

The GSM system is described by two main components:
1. an acoustic processing which consists of:

- a statistical segmentation of the speech in long
steady units and short transient ones.
- a speech activity detection.
- a cepstral analysis performed on each seg-
ment.

2. a decision procedure: the language is identified
via a maximum likelihood test provided by the
language-dependent GMMs.

The same processing is applied during training and rec-
ognition.



2.1 The segmental pre processing
2.1.1 Segmentation and speech activity detection

The segmentation is provided  by the "Forward-
Backward Divergence” algorithm [5] which is based on
a statistical study of the acoustic signal. Assuming that
the speech signal is described by a string of quasi sta-
tionary units, each one is characterized by an auto re-
gressive Gaussian model; the method consists in per-
forming on line a detection of changes in the auto re-
gressive parameters. The use of an a priori segmenta-
tion partially removes redundancy for long sounds, and
a segment analysis is very useful and relevant to locate
coarse features. This approach has already shown inter-
esting results in automatic speech recognition; in par-
ticular, experiments have proved that the segmental du-
ration provides very useful information [6].
The segmentation is followed by a Speech Activity De-
tection in order to discard pauses. Each segment is la-
beled "silence" or "speech"; then only speech segments
are analyzed.

2.2 Cepstral analysis

Each segment is represented with a set of 8 Mel-
Frequency Cepstral Coefficients (MFCC) and 8 delta-
MFCC. Cepstral analysis is performed using a 256-
point Hamming window centered on the segment. This
parameter vector may be extended with the duration of
the underlying segment, the energy and delta-energy
coefficients. A cepstral subtraction performs both blind
deconvolution to remove the channel effect and speaker
normalization.

2.2 Statistical framework

Let L = { L1, L2,…, LNL} be the set of NL languages to
identify; the problem is to find the most likely language
L* in L, given that the effective language is really in this
set (close set experiments).
Let T be the number of segments in the spoken utter-
ance and O = { o1, o2,…oT} be the sequence of observa-
tion vectors. Given O and using Bayes' theorem, the
most likely language L* according to the model is:
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Additionally, if a priori language probabilities are as-
sumed to be identical, one gets the equation:
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Under the standard assumptions, each segment is con-
sidered independent of others, conditionally to the lan-
guage model. Finally, L* is given in the log-likelihood
space by:
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For each language Li, a GMM is trained with the set of
detected speech segments. The EM algorithm is used to

obtain the maximum likelihood parameters of each
model [7]. This algorithm presupposes that the number
of the mixture components, Qi, and initial values for
each Gaussian pdf are given; in our system, the LBG
and the LBG Rissanen algorithms fix these parameters.
During the recognition, the utterance likelihood is com-
puted with the detected speech segments.

2.2.1 Initializing GMM with the LBG algorithm

The LBG algorithm [8] elaborates a partition of the ob-
servation space by performing an iterated clustering of
the learning data into codewords optimized according to
the nearest neighbor rule. The splitting procedure may
be stopped either when the data distortion variation
drops under a given threshold or when a given number
of codewords is reached.

2.2.2 Initializing GMM with the LBG Rissanen algo-
rithm

The LBG-Rissanen algorithm is similar to the LBG al-
gorithm except for the iterated procedure termination.
Before splitting, the Rissanen criterion I(q) [9], function
of the size q of the current codebook is computed from
the expression:
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In this expression, Dq(X) denotes the log-distortion of
the training set X according to the current codebook, p
the parameter space dimension and N the cardinal of X.
Minimizing I(q) results in the optimal codebook size
according to the Rissanen information criterion. We use
this data driven algorithm to determinate independently
the optimal number Qi of Gaussian pdfs for each lan-
guage GMM.

3. PHONETIC DIFFERENTIATED
MODEL

In the PDM approach, language independent vowel de-
tection is performed prior to the cepstral analysis. The
detection locates segments that match vowel structure
according to an unsupervised language-independent al-
gorithm [10]. For each language Li, a Vowel System
GMM, VSi, (respectively a Consonant System GMM,
CSi) is trained with the set of detected vowel segments
(resp. non vowel segments).
Let T be the number of segments in the spoken utter-
ance, obtained after the acoustic processing and O =
{o1, o2,…oT} be a sequence of observation vectors. Each
vector ok consists of a cepstral vector yk and a macro-
class flag ck, equal to 1 if the segment is detected as a
vowel, and equal to 0 otherwise. In order to simplify the
formula, we note ok={yk,ck}.
Since (ck) is a deterministic process, the most likely lan-
guage computed in the log-likelihood space is given by:
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To train the VS and CS models, the procedure is the
same as this used for the training of the GSM. The EM
algorithm is coupled to an initialization of the number
of components and the pdf parameters, by the LGB al-
gorithm or the LBG Rissanen algorithm.
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Figure 1 - Block diagram of the Phonetic Differentiated
Model system. The upper part represents the acoustic preproc-
essing and the lower part the language dependent Vowel-
System and Consonant-System Modelings .

4. EXPERIMENTS

4.1 Corpus description

The OGI Multilingual Telephone Speech [11] corpus
has been used in our experiments. The study is limited
to 5 languages (French, Japanese, Korean, Spanish and
Vietnamese). The phonological differences of the vowel
system between these languages have motivated the use
of this subset. Spanish and Japanese vowel systems are
rather elementary (5 vowels) and quasi-identical while
Korean and French systems are more complex. Viet-
namese system is of average size.
The data are divided into two corpora, namely the
training and the development sets. Each corpus consists
in several utterances (constrained and unconstrained).
There are about 20 speakers per language in the devel-
opment subset and 50 speakers per language in the
learning one. There is no overlap between the speakers
of each corpus. The identification tests are made with a
subset of the development corpus, called '45s' set, since
45s is the mean duration of the utterances.

4.2 Global Segmental Model

Several acoustic analyses and the two initializations of
the GMMs have been assessed with the GSM system.
The best results are obtained with 17 parameters: 8
MFCC, 8 delta MFCC and the duration of the seg-
ment. With 5 languages, the correct identification rate
raises 86 % using the classical LBG algorithm initiali-
zation: 50 Gaussian laws have been necessary. The
LBG-Rissanen algorithm hasn't bring any improvement:
the optimal topology of the GMM is difficult to find
when we study the global acoustic space.

4.3 Phonetic Differentiated Model

To assess the VS models, a first sequence of experi-
ments has been performed: the most likely language L*

is computed according to the only VS models; the con-
tribution of non vowel segments is equal to zero in the
expression (5). When using the LBG algorithm, the best
result is 67 % of correct identification (with 20 Gaus-
sian components by VS model). Using the LBG-
Rissanen algorithm to estimate the optimal size of each
VS GMM is more efficient since the identification rate
reaches 78 %. This result shows that the modeling of
the vowel systems, is relevant and that the LBG-
Rissanen approach is able to determinate their conven-
ient topology; remember that, in this case, the size of
each GMM depends of the language!
The same experiments have been performed to assess
the CS models. The best performance has been obtained
when the initialization of the GMM is realized by the
LBG algorithm: 30 Gaussian components are necessary
to raise 78 % of correct identification. The LBG-
Rissanen algorithm has provided less discriminative
models than those of constant size: consonant segments
are acoustically more heterogeneous than vowel seg-
ments; that means that the consonant parameter space is
much more complex than the vowel space and the LBG-
Rissanen is unable to deal with it.
The previous CS and VS models are combined to give
the PDM approach (equation 5); so a great number of
experiments have been necessary to define the best
PDM system. The best one merges the VS model ini-
tialized by the LBG Rissanen algorithm and the CS
model initialized by the classical LBG Rissanen. This
merging has improved the performance: 85 % of correct
identification is reached.

4.4 GSM and PDM Comparison

As the previous experiments have shown, no significant
differences, in term of identification rate, arises between
the PDM and GSM approaches since they reach respec-
tively 85% and 86% of correct identification (table 1).

VS model CS model PDM GSM

78 78 85 86

table 1 : – Identification scores with all languages among 5
languages (45s male utterances).



In order to see if the information extracted from the sig-
nal by the two approaches is redundant or complemen-
tary, another sequence of experiments are performed to
merge the different models.
The best performance is reached, when we combine the
GSM system and the VS model system: identification
rate among 5 languages raises from 86 % to 91 % (table
2). The combination "CS model–GSM" does not im-
prove the results: consonantal information seems to be
redundant with GSM ones. When we merge the results
of the GSM and the PDM, the results are intermediate:
the gain of the VS modeling is attenuated by the CS
modeling.
Experiments have been done with 3 languages, in order
to compare with systems proposed in the literature. The
figure 2 shows the results for the male part of the test
corpus and for the global test set. The mean results are
respectively 93.3 % and 86.4 %. This last result must be
compared to the 84% obtained by O. Andersen [12] and
91% by S. Kadambe [13], where Hidden Markov Mod-
els (HMM) and n-gram models have been used to
model respectively the acoustic space and  the phono-
tactic level.

VS model CS model PDM

GSM 91 86 88

table 2 : Identification scores obtained by merging the GSM
and the models issued from the phonetic differentiated ap-
proach (5 languages, 45s male utterances).

5. CONCLUSION

This work proves that a significant part of the language
characterization is embedded in its vowel system; the
merging of the GSM and the VS model shows that ex-
tracting and modeling this information is possible and
efficient. We will complete the notion of differentiated
model, by introducing different model structures
(GMM, HMM) and different acoustic parameters de-
pendent of the phonetic classes (vowel, occlusive,
fricative, et al). Then, to compare this approach to the
classical ones, it will be necessary to complete our sys-
tem with a phonotactic model, appropriate to our own
acoustic projection.
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Figure 2: Identification rate for a 3 language identification task, and the '45s' test set. (in light, the test is limited to the male
speaker set, while in dark, the global test set is used)


